Modified Quasilinearization For Optimal Flight Trajectory
نویسندگان
چکیده
منابع مشابه
On-Board Near Optimal Flight Trajectory Generation using Deferential Flatness
An optimal explicit guidance law that maximizes terminal velocity is developed for a reentry vehicle to a fixed target. The equations of motion are reduced with differential flatness approach and acceleration commands are related to trajectory’s parameters. An optimal trajectory is determined by solving a real-coded genetic algorithm. For online trajectory generation, optimal trajectory is appr...
متن کاملOn-Board Near Optimal Flight Trajectory Generation using Deferential Flatness
An optimal explicit guidance law that maximizes terminal velocity is developed for a reentry vehicle to a fixed target. The equations of motion are reduced with differential flatness approach and acceleration commands are related to trajectory's parameters. An optimal trajectory is determined by solving a real-coded genetic algorithm. For online trajectory generation, optimal trajectory is...
متن کاملOn-Board Near Optimal Flight Trajectory Generation using Deferential Flatness
An optimal explicit guidance law that maximizes terminal velocity is developed for a reentry vehicle to a fixed target. The equations of motion are reduced with differential flatness approach and acceleration commands are related to trajectory's parameters. An optimal trajectory is determined by solving a real-coded genetic algorithm. For online trajectory generation, optimal trajectory is...
متن کاملFlight Trajectory Path Planning
The paper describes an application of the A* algorithm for flight path planning for airplanes with defined motion dynamics operating in a continuous three-dimensional space constrained by existing physical obstacles. The presented A* algorithm modification provides significant acceleration (reduction of the state space) of the path planning process. The described algorithm is able to find a pat...
متن کاملPolynomial Trajectory Planning for Quadrotor Flight
We explore the challenges of planning trajectories through complex environments for quadrotors. We use the RRT* algorithm to generate an initial route through a 3D environment and then construct a trajectory consisting of a sequence of polynomial spline segments to follow that route. We present a method of jointly optimizing polynomial path segments that is numerically stable for high-order pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Conference on Aerospace Sciences and Aviation Technology
سال: 1987
ISSN: 2636-364X
DOI: 10.21608/asat.1987.26194